
 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

9

Enhancing Software Effectiveness and Defect Prediction with

Machine Learning

1Muddala Likhitha Kanaka Sri Sai, 2 Kella Madhuri, 3 Maddala Narendra, 4 Nelaparthi Kamal Raj,

5Mr. L.D.R. Kishore,

1,2,3,4 Student, Dept. of CSE, DNR College of Engineering & Technology, Balusumudi,

Bhimavaram, India.

5 Professor, Dept. of CSE, DNR College of Engineering & Technology, Balusumudi, Bhimavaram,

India.

Abstract—
While contributing to both business outcomes and

development mistakes, software defect prediction

gives development teams measurable outputs. It is

possible to aid developers in finding flaws and

organizing their testing efforts by forecasting where

code may be problematic. For early identification, the

proportion of classification that provides the correct

prediction is crucial. Additionally, because of their

massive size, software-defect data sets are

acknowledged and supported to some extent. Using

the weka simulation tool, a hybridized strategy is

used to solve this problem. The technique

incorporates the PCA, random forest, naive bayes,

and the SVM Software Framework. The five datasets

included in the study are PC3, MW1, KC1, PC4, and

CM1. By measuring and comparing the parameters of

confusion, precision, recall, identification accuracy,

etc., with the prevalent schemes, a systematic

research study is carried out. According to the results

of the investigation, the suggested method will

provide better answers for predicting device failures.

Software for predicting defects; metrics for software;

prediction defect models; quality management

systems; machine learning techniques;

 Introduction

Over the last decade, people have increasingly put

their emphasis on software-based systems, where the

quality of the software is seen as the most important

factor in user functioning. Due to the large volume of

application software being produced, the issue of

software quality is still not addressed, resulting in

insufficient output for both private and industrial

applications. Many sectors rely on designs for defect

prediction. These models are useful for many tasks

like as fault prediction, effort estimation, software

reliability testing, hazard analysis, and more

throughout the growth stage. Using a set of

predetermined training data, a supervised machine

learning system may make predictions. After the

algorithm learns the ropes on the training dataset, it

comes up with rules to forecast the class label on

fresh data. During the learning phase, the predictor

function is generated and strengthened using

mathematical techniques. Both the input value and

the specified output value are part of the training data

utilized in this procedure. The output that is

commonly known is compared with the predicted

quality of the ML algorithm. Until the maximum

number of loops is exhausted or the ideal prediction

accuracy is achieved, this is repeated in several

iterations of the training data. Unsupervised learning

methods work in a world where the data value of the

class label output is unknown. On the other hand, the

program receives a data cluster, which it then

processes using an algorithm to find patterns and

correlations. Computer Science and Engineering at

India's Thiagarajar College of Engineering in

Madurai is the primary focus. On a social networking

site, for instance, one may choose a circle of friends.

Predicting faulty modules helps improve software

quality. One of the first steps in identifying

potentially flawed systems, such as units or classes, is

defect prediction, which entails building models. The

modules may be categorized as either defect prone or

not prone to accomplish this. Support vector

classifiers (SVCs), random forests, and naive bayes

are among the most popular ways to determine the

classification module. During the progress testing

stages, the malfunction prone modules are prioritized,

while the non-defect prone modules are tested when

time and money allow. The classifier approach

involves establishing and examining the feature of

classification, which is the link between

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

10

characteristics and the class label in the training

dataset, using formulas for target categorization. In

order to provide the labels for future datasets, those

rules are also required. Classification patterns and a

classifier may therefore be used to classify the

unknown datasets. Due to the enormous deployment

of software, researchers have repetitious job defining

software problems, detecting the issue, and

recognizing it. Sorting the software dataset into a

defective and non-defective set is the primary

objective when using the dataset as a model for bug

prediction. In this approach, the user knows the real

class values and feeds them into the classifier as input

into the software dataset. Prior to this plan, metric

approaches focused on requirements and design had

shown promising outcomes. However, there is more

work to be done in terms of algorithm design and

forecast accuracy.

RELATED WORK
The software defect prediction model put forth by

Wang et al. [3] for expanding the number of

application software systems makes use of machine

learning, a potent tool for prediction. Databases with

bugs in them contain imbalanced data that generates

haphazard patterns. Developing a trustworthy

scenario classifier for use in academia and business is

motivated by this dilemma. According to Xu et al.

[4], who studied "software defect prediction

strategies," the conventional wisdom is that in order

to improve the effectiveness of defect prediction

strategies, one must first reduce the number of

superfluous features. A maximum data point, piece of

information

The imbalanced nature of software defect outcomes

was recently addressed by Duksan et al. [5], and

throughout the prediction process, relatively few

occurrences exhibit characteristics that correspond to

the faulty class. Because this stage reduces software

industry efficiency, it need a particular categorization

system. To fix it, we turn it into a multi-objective

optimization problem and use a multi-goal learning

system by studying a diverse cross-project

environment. "Relied on a popular approach in

machine learning, namely SVM (support vector

machine)" was the technique used by Shan et al. [6].

Additionally, attribute predictability is addressed by

combining a support vector classifier with a locally

linear embedding method. In fact, this method

configures SVM constraints with a grid search

technique and a tenfold cross-validation procedure.

The LLE-SVM is effective in fault detection,

according to the experimental results.

The Predicting Software Deficiencies using a neural

network technique, which incorporates the neural

network idea together with the Bayesian

methodology as a radial foundation, was introduced

by Yang et al. [7]. While the motivation-

minimization strategy is often used for weight

realization, enhancing the weight update framework

with one or two Gaussian structures may improve the

radial neural network's efficiency. In their suggested

model for stable program quality estimate based on

software development, Han et al. [8] say that... To

improve prediction outcomes, our method

incorporates a computer-assisted software safety

estimate, a Rayleigh model, a system building

forecast model, and an enhanced software reliability

template. A model that describes the symptoms of

design uncertainty based on an aspect-oriented

method of evaluating uncertainty has been put forth

by Parthipan et al. [9]. It has been noted that most

defect prediction models are created at the design

process or at the code level. These models are used

for binary classification, which involves determining

which faults are trustworthy and which are not, or for

regression analysis, which involves estimating the

total number of flaws. According to Panichella et al.

[10], "a unified predictor of defects that incorporates

into account the clusters supplied by diverse

methodologies of machine learning” improved the

ability to identify software projects that are prone to

faults. The authors Felix et al. [2] have suggested

research into software fault prediction utilizing a

neural network–centric machine learning approach.

For the purpose of studying defect prediction, this

paper considers Github datasets. The use of a NN is

used to gain classification and prediction by using

registry linkages between software programs and

their errors. Feature section and reduction will

enhance performance in machine learning-based

classification and prediction strategies. The way we

talk about something is as an important part. In order

to investigate how a semi-supervised learning method

for software defect prediction was put into practice,

Lu et al. [12] "used a version of the algorithm for

self-study". The study's authors came to the

conclusion that trust fitting might stand in for current

supervised techniques. The semi-supervised

technique outperformed a random forest model with

dimensional reduction and training modules that

included common faults. A meta-study of all the

elements impacting output in predictions was carried

out by Shepperd et al. [13]. By analyzing the factors

that significantly affect the software defect

classificatory's predictive abilities, they ensured that

their defect prediction system was effective,

according to calculations based on the Matthews

correlation coefficient. Classifier choice, they found,

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

11

had a little effect on output, but model building

factors—that is, features unique to the research

group—had a large one. This is due to the fact that

the research team is responsible for doing preliminary

data processing. Using an uneven dataset of software

faults, Jayanthi et al. [1] "developed a Selection of

characteristics for applications approach. Subsets of

attributes are subsequently collected once the

selection using wrapper-based attributes is executed.

To mitigate the effects of the imbalanced dataset, the

next step involves using random sampling.

RESEARCH METHODOLOGY
Included in the compilation are the most popular and

widely used machine learning techniques. Here are

several methods along with brief descriptions of what

they include. As an applied training method for

statistical technique knowledge grouping, Naive

Bayes (ABN) is the first to be discussed. This method

casually asserts that the properties of a certain class

are autonomous, as the name suggests, which is

naive. Characteristics take on strong or innocent

seclusion. Assigned as a vector for drawing class

descriptors from limited sets, it serves as a template

that problematic items might utilize as class labels.

Because to their lack of complexity and reliance on

generalizations, naive bays fall within the category of

real-world issues. The Random Forest B Building a

framework that can forecast value functions from

various inputs is the algorithm's main goal. The

interior nodes each represent a different input

parameter. There are limits on the progeny of each of

these parameters for all possible values. The

objective factor, represented by the leaf in the tree, is

the one that the input factor's defined parameters may

cross to, from the root to the leaf. The learning

technique maps the item's analysis to the desired

quality interpretation using the random forest

statistical model. Mining, statistics, and machine

learning all make use of this prediction method. A.

SVC Data used for classification and regression

analysis may be understood with the help of the

learning approach. A support vector machine (SVM)

model is a set of test samples spread throughout a

range and partitioned as evenly as possible according

to their distributional class. The fresh samples are

categorized according to the side of the gap they fell

into after mapping into a specific region. For

classification and correlation, support vector

machines (SVMs) build a set of hyperlens in a space

without dimensions. The greatest distance between a

group of points in a certain class to a hyperplane is

called the functional margin. In the end, the

difference between the generalization error and the

functional margin was inversely proportional.

Section D. Neural Sytem These neurons are part of a

network that allows them to communicate and

exchange data.

The following is a definition of how an ANN works.

To begin, at the input layer node, the neural network

takes the data variable values. The links that connect

nodes are given weights. The numerical Weights are

adjusted based on the NN's ability to learn and adapt.

Moving across the network involves crossing nodes

and determining the values of variables. Each

connection's weight influences the parameter value.

Parameter values are compared to goal values at the

output node, where the predicted effect is calculated.

Fig 1. Machine learning techniques

Classification

 PROPOSED APPROACH
A crucial problem in software engineering is the

prediction of software errors. Methods for defect

prediction based on machine learning software were

covered in the previous chapter. Researchers still

have a long way to go before they can solve the

problems of software bug mismatch, classification

accuracy, and general efficiency using these

approaches. An artificially dependent neural network

technique for software defect prediction and a hybrid

feature reduction scheme are introduced to address

this issue. In the first part of the article, you'll find an

improved principal component analysis (PCA)

approach for dimensionality reduction and numerical

modeling; in the second part, you'll get information

on using the neural network in conjunction with the

present PCA method. Part A: PCA Primary

component analysis, or PCA, is a statistical method.

Principal component analysis (PCA) is a way to

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

12

reduce the size of large datasets while increasing the

computing complexity and reducing information loss.

Reducing the dataset's dimensionality is the objective

of primary component analysis (PCA), a computer

approach. The process of transforming the data into a

new quaternion is often called a linear orthogonal

transformation. The main issue is that principal

component analysis (PCA) is more of a method for

extracting items than a tool for feature selection.

Characteristics are evolving into new ones as a result

of linear variation. Features with the least variance

should be used to execute the reduction. Such articles

often made use of principal component analysis

(PCA) to enhance the efficacy of their experiments.

According to this, the principal component analysis

(PCA) approach transforms n vectors {x1,x2,...,xn}

from a d-dimensional space into n vectors

{x1,x2,...,xn} in a new dimensional space. Feature

selection technique in the suggested approach

identifies and prioritizes the data set's most useful

functionality for learning and prediction, which is a

major benefit. The content is simplified and the

learning approach may be made more efficient.

Classifying and forecasting outcomes rely heavily on

input data.

Fig 2. Software Defect Prediction Model PSO

stands for Particle Swarm optimization.

This approach finds the best possible answer to the

issue by making the first, candidate solution better.

Each potential candidate in this technique is referred

to as a particle locally. Based on its location and

velocity, this particle uses a system to travel the

search region. Finding the optimal placements in the

search space is another parameter that relies on

serialization. In large search spaces, PSO may locate

a solution that is close to optimum. Using this

approach to find the answer is not guaranteed.

Applications of this approach span several domains,

from artificial neural networks (ANN) and fuzzy

controllers to optimization issues. If you're in the

jungle with a group of buddies, you should know that

there's just one way out. Their understanding of the

way to departure is limited to only one dimension,

relative distance. Everyone involved in this problem

may be thought of as a particle, and just like any

other particle, they will have a certain location and

speed. Each particle's speed is proportional to its

distance from the exit point, as stated by PSO. It is

possible to make anything more appealing by

adjusting certain factors in PSO. A single

implementation with few tweaks may serve a wide

range of purposes. A wide range of industries are

making use of Particle Swarm Optimization, from

those dealing with massively complex technology to

those with one-of-a-kind applications that prioritize

narrowly defined criteria. B. DataSet Access a

number of databases online without paying a dime.

Database of Kaggle promise problems. The data sets

were backed by five datasets: KC1, PC3, PC4, MW1,

and CM1. Numeric defect level KC1 classes and data

retrieval (here referred to as AT) were both used. The

datasets used in this research are from the Kaggle

PROMISE database and include many

characteristics; they are KC1, CM1, PC3, MW1, and

PC4. A count of characteristics, a breakdown of

useable components, a breakdown of defective

components, and a defective percentage are all shown

in the tables, which pertain to the hypothetical

dataset.

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

13

as contrasted with other state-art approaches. There

are a plethora of measures to consider, including

recall, uncertainty matrices, accuracy, rate, false-

positive rate, and precision. These classification tests

may be used to create a matrix that contains the

expected and actual class values.

Fig 3.Characteristics of Dataset

In the above figure, we can see the data sets

that pertain to the amount of defective, non-

faulty, and real characteristics for each case

type.

RESULTS AND ANALYSIS
All of the datasets were from the Kaggle promise

dataset repository. We make use of five datasets:

KC1, PC3, C4, MW1, and CM1. Naive Bayes,

Random Forest, SVC (Linear Regression), and

Principal Component study (PCA) are the methods

that were selected for the study. Collecting the data

sets in arff format from the Kaggle database is made

easier with the help of the r studio tool.

Consequently, data sets that were compatible with it

were rendered by running the data processing section

mast. The table below displays the summary of the

test results. The accuracy value of each approach,

expressed as % concordance, is shown. The most

prevalent heuristic in a dataset is labeled as such,

among other things. Table I: Evaluation of SVC

Performance The results show that out of the five

datasets that were tested, the linear classification

approach has the highest accuracy in defect

prediction, making it the most precise and accurate

methodology. Neural networks, naive Bayes, and

random forests were the other three algorithms, and

they could only achieve maximum accuracy on a

single dataset.

TABLE II. PERFORMANCE EVALUATION FOR
RANDOM FOREST

A description of each method's standard deviation

loss is included in the table above. It reveals that each

method's percentage phrases are incorrectly positive.

Among many approaches, the dataset's top algorithm

is marked to stand out. Table III: Assessment of

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

14

Naïve Bayes Performance

You can see the test's standard deviation from the

anticipated fault in the table up there. The neural

network approach has the best success rate.

Overcoming the tie would be helped by the failure

rate. If two algorithms are tied in terms of defect

prediction accuracy, the one with the less error will

win.

Tdata stands for the datasets used for training our

prediction algorithms, whereas Vdata stands for the

datasets used for testing. Both the findings and the

forecast were shown in the Test and Pred tables,

respectively.

Fig 5.Standard Deviation for each Dataset From

the analysis,

 Based on the results of the research, it seems that

neural networks, followed by random forests, have

the lowest failure rates. In addition, a linear

classification (SVC) has the highest accuracy value.

To determine which technique works best when there

is a disagreement over accuracy estimate, error rate

parameters might be taken into account.

 CONCLUSION AND FUTURE

WORK
Predicting software flaws using information-mining

methods is the primary goal of this study. In addition,

this area has grown into a sizable research topic, with

many different approaches used in an effort to find

ways to make software defect detection and bug

prediction more efficient. As part of our research, we

developed a novel hybrid model by combining

included in order to get a feature reduction template,

with overall probability additionally used to reduce

the data retrieved by PCA. Problems in code may

also be found using the neural network classification

technique. According to the research, the suggested

strategy significantly outperforms several state-of-

the-art models in terms of efficiency and obtains an

AUC of 98.70 percent. In order to demonstrate,

without bias, how important the feature selection

impact is. Whenever feature selection procedures are

used, or when no approach is used, there is no

discernible variance in classifier accuracy. When

using approaches for function selection without a set

of features, classifier accuracy suffers. As a result, it

is clear that feature selection strategies reduce the

time and space challenge of defect prediction without

compromising prediction accuracy. Using many

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

15

datasets may enhance these insights even further.

Improving the results is possible with more datasets.

Additional methods may be compared as well. This

research took into account the most popular and often

utilized strategies. The problem of classification

accuracy for large datasets will likely be addressed in

the future, and new approaches will be shown and

utilized for deep study of feature reductions and

classification. PCA is

Fig 6.Overall Algorithm classification on Dataset.

 The study's findings suggest that, after random

forest, neural networks may have the lowest failure

rate. The dimensional classification, on the other

hand, has the highest detection rate. The failure rate

parameter may be used to ascertain the proper result

in the event of a tie accuracy forecast.

REFERENCES
[1]. Jayanthi, R. and Florence, L., 2019.

Software defect prediction techniques using

metrics based on neural network classifiers.

Cluster Computing, 22(1), pp.77-88.

[2]. Felix, E.A. and Lee, S.P., 2017. Integrated

approach to software defect prediction.

IEEE Access, 5, pp.21524-21547.

[3]. Wang, T., Zhang, Z., Jing, X., Zhang, L.:

Multiple kernel ensemble learning for

software defect prediction. Autom. Softw.

Eng. 23, 569–590 (2015).

[4]. Xu, Z., Xuan, J., Liu, J., Cui, X.: MICHAC:

defect prediction via feature selection based

on maximal information coefficient with

hierarchical agglomerative clustering. In:

2016 IEEE 23rd International Conference on

Software Analysis, Evolution, and

Reengineering (SANER), Suita, pp. 370–

381 (2016).

[5]. Ryu, D., Baik, J.: Effective multi-objective

naïve Bayes learning for cross-project defect

prediction. Appl. Soft Comput. 49, 1062

(2016).

[6]. Shan C., Chen B., Hu C., Xue J., Li N.:

Software defect prediction model based on

LLE and SVM. In: Proceedings of the

Communications Security Conference (CSC

’14), pp. 1–5 (2014).

[7]. Yang, Z.R.: A novel radial basis function

neural network for discriminant analysis.

IEEE Trans. Neural Netw. 17(3), 604–

612(2006).

[8]. K. Han, J.-H. Cao, S.-H. Chen, and W.-W.

Liu, “A software reliability prediction

method based on software development

process,” in Quality, Reliability, Risk,

Maintenance, and Safety Engineering

(QR2MSE), 2013 International Conference

on. IEEE, 2013, pp. 280–283.

[9]. S. Parthipan, S. Senthil Velan, and C. Babu,

“Design level metrics to measure the

complexity across versions of ao software,”

in Advanced Communication Control and

Computing Technologies (ICACCCT), 2014

International Conference on. IEEE, 2014,

pp. 1708–1714.

[10]. A. Panichella, R. Oliveto, and A.

De Lucia, “Cross-project defect prediction

models: L’union fait la force,” in Software

Maintenance,

[11]. Bautista, A.M., Feliu, T.S.: Defect

prediction in software repositories with

artificial neural networks. In: Mejia, J.,

Munoz,M., Rocha,Á., Calvo-Manzano, J.

(eds.) Trends and Applications in Software

Engineering.Advances in Intelligent

Systems and Computing, vol.405. Springer,

Cham (2016).

[12]. H. Lu, B. Cukic, and M. Culp,

“Software defect prediction using

 ISSN NO: 9726-001X

Volume 13 Issue 02 2025

16

semisupervised learning with dimension

reduction,” in Automated Software

Engineering (ASE), 2012 Proceedings of the

27th IEEE/ACM International Conference

on. IEEE, 2012, pp. 314–317.

