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                                                               Abstract 

As more and more people rely on computers, it's important to keep an eye on how much power they're using. Since cores in a multicore 

design may run at lower frequencies when processor demand is low, they may provide a chance to reduce power consumption. Research 

on measuring the power consumption of multicores has often assumed that all cores operate at the same frequency, and this was the 

case until recently. Turbo Boost and other new technologies promise to enable cores on a chip to run at multiple rates. This work 

introduces DREAM-MCP, an energy-aware resource management paradigm that allows for a nuanced analysis of the energy footprint 

of multicores running at varying clock rates. When combined with the performance requirements of the calculations, this data may be 

utilized to construct a fine-grained energy-efficient plan for execution of the computations and a schedule of frequency modifications on 

a per-core basis. We've conducted two case studies—one with a static workload (the Gravitational N-Body Problem) and one with a 

dynamic workload (the Adaptive Quadrature)—to test the efficacy of our method. The energy used in the reasoning to generate the 

schedules is outweighed by the energy savings realized experimentally for both situations. 

 Keywords: Frequency planning; Resource management; Efficiency; Performance enhancement. 

                                                              Introduction  

Concerns about computers' impact on the environment have increased the focus on conserving energy and 

making the most of computing resources. According to some estimates, computers are responsible for between 

two and three percent of all human-caused greenhouse gas emissions. An important issue that arose was how 

fast a processor runs and how much power it uses: the dynamic power needed by a CMOS-based processor is 

directly proportional to the product of its operating voltage and clock frequency, and the voltage needed to run 

such a processor is directly proportional to its clock frequency. As a result, a CMOS processor's dynamic power 

consumption is (usually) proportional to the frequency's cube [1]. This prompted a move away from faster CPUs 

toward multicore processors so that programs could get the additional processing power they required. The fact 

that calculations don't necessarily have to be performed as quickly as feasible also presents an opportunity. 

Using DVFS, you may tailor the amount of processing power delivered to your specific workload requirements. 

The frequency of each core is assumed to be constant in existing analytical models of multicore power 

consumption [2, 4]. This is true for current processors that use off-chip voltage regulators (i.e., a single regulator 

for all cores on the same chip), which sets all sibling cores to the same voltage level [5], but it  

 

does not capture the whole scope of control options. In a multi-chip  system, for instance, off-chip reg orators 

may be utilized for per-chip frequency management [6], allowing for more nuanced control by enabling the 

cores on each chip to run at their own unique frequency. In the lack of granular control over chip frequencies, 

increasing core frequencies momentarily is usually still possible. For instance, in order to improve performance 

in certain situations, Turbo Boost [7] allows for variable frequency management by increasing the clock rate of 

all processor cores. 

is both doable and essential. Keep in mind that the processor's frequency may only be raised if it is already 

running at or below its specified minimum power, temperature, and current levels. In addition to these 

prospects, recent developments in on-chip switching regulators [8] will allow cores on the same device to run at 

multiple frequencies, providing much more versatility for frequency scaling. Per-core voltage control may 

provide significant energy savings compared to conventional off-chip regulators, according to studies [9]. 

Recent research [10] has also shown the feasibility of a hardware implementation of a multicore voltage 

regulator (MCVR) for use on a single chip. The MCVR is essentially a DC-DC converter and can convert 

voltages between 0.4 V and 1.4 V from an input of 2.4 V. Supporting efficient scalability, MCVR quickly 

reduces power consumption in response to CPU requirements via the use of variable voltage. Specifically, the 

output may be adjusted by 1 V in less than 20 ns in each direction.  

Connected Tasks  
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Although the growth in processing speeds has long been anticipated by Moore's Law, delivering the processing 

power on a single processor has proven difficult due to the exponential increase in corresponding power needs 

(often referred to as the power wall). The development of multicore architectures has emerged as a possible 

answer [11]. Since then, [12] researchers have paid more attention to the topic of multicore power management, 

and reducing power consumption has become an important goal in multicore hardware and software 

development. In order to establish a formal relationship between the performance of parallel code running on 

multicore processors and the power they would consume, Li et al. were among the first to propose an analytical 

model [2] that brought together efficiency, granular it of parallelism, and voltage/frequency scaling. They 

determined that a substantial amount of electricity may be saved via parallel computing provided that the 

granularity and voltage/frequency levels are carefully selected. The performance-energy trade-off has been 

studied [3, by Wang et al. Different strategies for distributing computations among processors have been 

suggested to meet a range of performance-energy goals, such as those imposed by energy or performance 

restrictions. However, their research is limited to a single use case (matrix multiplication on FPGA-based 

mixed-mode chip multiprocessors) and a single kind of hardware. Korthikanti et al. [4] have offered a more 

generic quantitative analysis that is not tied to any specific software or hardware. They present a technique for 

measuring the extent to which parallel algorithms may scale in energy efficiency without sacrificing 

performance. In example, the ideal number of cores and their frequencies may be determined to minimize 

energy consumption for a given problem instance and a certain performance requirement. The energy-

performance trade-off [13] has been analysed using this technique, and application energy waste has been 

mitigated [14]. Due to the hardware constraint of existing off-chip regulators, it is assumed in these analytical 

studies that all cores run at the same frequency; this limitation is soon to be lifted thanks to new developments. 

Finer grained control is feasible in a variety of contexts. If there are numerous chips, the cores on each chip 

might be running at various frequencies even if off-chip regulators are utilized. For instance, Zhang et al. 

suggest an adaptive frequency scaling at the chip level, which divides workloads among numerous multicore 

processors based on their shared frequency-to-performance characteristics. Per-chip frequency scaling has been 

proven to save around 20 watts of CPU power while maintaining performance within a given limit of the 

original system for 12 SPECCPU2000 benchmarks and two server-style applications. 

Effect of frequency scaling on energy consumption  

Consider an application consisting of two parts: a sequintial part s, followed by a parallel part p, so that the 

sequential part must be executed on a single core, and the parallel part can be (evenly or unevenly) distributed 

over multiple cores. Although we consider the case where all parallel computation happens in one stretch, this 

can be easily generalized to a case where sequential and parallel parts of the computation take turn, by having a 

sequence of sequential-parallel pairs. Let us also normalize the sum of the two parts to 1, i.e., s + p = 1. Analysis 

carried out in [16] shows how to optimize processor frequency for the case when the the parallel part can be 

evenly divided between a number of cores. To achieve minimum energy consumption while maintaining a 

performance identical to running the computation sequentially on a single core processor, the optimal 

frequencies for executing the sequential and parallel parts (f ∗ s and f ∗ p , respectively) are: 

 

where N is the number of cores, and α is the exponential factor of power consumption (we use the value of 3 for 

α, as is typical in the literature). In other words, the power consumption of a core running at frequency f is 

proportional to f α. In this section, we illustrate the effects of non-uniform frequency scaling on multicore 

energy consumption. Particularly, we extend the analysis in [16] to consider two specific technologies: per-core 

frequency, and Turbo Boost. 

Reasoning about multicore energy consumption 

 In our previous work, we have constructed DREAMa (Distributed Resource Estimation and Allocation Model) 

[20] and related mechanisms [21] for reasoning about scheduling of deadline constrained concurrent 

computations over parallel and distributed execution environments. In the most recent work [22], this approach 

have been repurposed to achieve dynamic load balancing for computations which do not constrained by 

deadlines. Fundamental to this work is a fine-grained accounting of available resources, as well as the resources 

required by computations. Here, we connect the use of resources by computations to the energy consumed in 

their use, leading to a specialized model, called DREAM-MCP (DREAM for Multicore Power). DREAM-MCP 
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defines resources over time and space, and represents them using resource terms. A resource term specifies 

values for attributes defining a resource: specifically, the maximum available frequency, the time interval during 

which the resource is available, and the location of existence for the resource, i.e., the core id. Computations are 

represented in terms of the resources they require. System state at a specific instant of time is captured by the 

resources available at that instant and the computations which are being accommodated. We use labelled 

transition rules to represent progress in the system, and an energy cost function is associated with each transition 

rule to indicate the energy required for carrying out the transition. 

 Experimental results  

A prototype of DREAM-MCP has been implemented for multicore processor resource management and energy 

consumption analysis. The prototype is implemented by extending Actor Foundry [26], which is an efficient 

JVMbased framework for Actors [27], a model for concurrency. A key component of DREAM-MCP is the 

Reasoner, which takes as parameters the resource requirements of a computation and its deadline, and decides 

whether the computation can be accommodated using resources available in the system. For computations which 

can be accommodated, the Reasoner generates a fine-grained schedule, as well as a frequency schedule which 

instructs the system to perform corresponding frequency scaling. To evaluate our prototype, we have 

implemented two applications, the Gravitational N-Body Problem (GNBP), and the Adaptive Quadrature, as 

two case studies. The way we evaluated our approach is as follows. We first carried out the computations on two 

systems, DREAMMCP and an unextended version of ActorFoundry (AF). Note that in these experiments, we 

run the processors at the maximum frequency, because processors with percore frequency scaling are not yet 

available. Specifically, we measured the execution times of a computation on DREAM-MCP, and the time taken 

for carrying the same computation AF. We treat the difference as the overhead of using DREAM-MCP 

mechanisms. Although DREAM-MCP introduces overhead, it helps conserve energy by generating a per-core 

frequency schedule for the computation. We then calculated the energy consumption for the two systems, with 

the assumption that in DREAM-MCP the cores can be operated at non-uniform frequency as our frequency 

schedule specifies. We then compared the energy consumption of the two systems, and also calculated the 

portion of the energy cost due to the overhead introduced by DREAM-MCP. For both case studies, the hardware 

we used to carry out the experiments is an Xserve with 2×Quad-Core Intel Xeon processors (8 cores) @ 2.8 

GHz, 8 GB memory and 12 MB L2 cache. The experimental results are presented in the following sections. 

Case study  

 gravitational N-body problem GNBP is a simulation problem which aims to predict the motion of a group of 

celestial objects which exert a gravitational pull on each other. The way we implement GNBP is as follows. A 

manager actor sends the information aboutall bodies to the worker actors (one for each body), which use the 

information to calculate the forces, velocities, and new positions for their bodies, and then send their updated 

information to the manager. This computation has a sequential portion in which the manager gathers all 

information about the bodies, and sends it to all worker actors, and a parallel portion is that each individual body 

calculates its new position, and sends a reply message to the manager. We carried out our experiments in two 

stages. In the first stage, we used a computation which could be evenly divided over the 8 available cores; in the 

second stage, it could not. For the first stage, we carried out experiments for an 8-body problem in the two 

systems, DREAM-MCP and ActorFoundry (AF), for which the execution times are shown in Table 2 and Figure 

3. Note that the processors run at maximum frequency in both cases. As illustrated in Table 2, the extra 

overhead caused by the reasoning is 16 ms, which is approximately 11.5%. Because Reasoner is implemented as 

a single Java native thread which is scheduled to execute exclusively, the overhead it causes is in the form of 

sequential computation. We then normalize the GNBP execution time to 1, and we can calculate energy for 

dynamic power consumption of the two systems using Equations 6 and 7 from Section 3. We also calculated the 

extra energy consumption by reasoning itself. As shown in Figure 4, by consuming extra 2.178% of the energy 

requirement of the computation, DREAM-MCP can achieve approximately 20.7% of energy saving. 

We next evaluated the case in which the computation can not be evenly distributed over 8 cores. We used a 12- 

body problem for illustration. The execution time in the two systems are shown in Table 3 and Figure 5. Note 

that the processors run at maximum frequency for both cases. The overhead caused by the reasoning is 21 ms, 

which is 9.3% of the execution time of AF. Figure 6 shows the dynamic energy consumption of the two 

systems. By consuming 2% of the energy requirement of the computations, DREAM-MCP achieves 23.7% of 

energy saving. Note that the experimental results on energy savings only indicate dynamic power consumption. 

Since the reasoning increases the total execution time of the computation, energy for static power consumption 

also increases. From Equation 3 in Section 3 (assuming we ignore processor temperature), it is only related to λ 

(hardware  
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Table 1 Execution time at maximum frequency (8-Body) 

 

 

Figure 1 GNBP (8-Body): execution time at maximum frequency. This figure shows the execution time of the sequential and parallel 

portions of 8-Body problem on two systems, AF and DREAM-MCP. 

constant) and T (execution time), i.e. Estatic = λ × T. Because the computational overhead of using 

DREAMMCP is 11.5% for the case when computation can be evenly distributed, and 9.3% for the case when it 

cannot be evenly distributed, extra energy for static power consumption is also 11.5% and 9.3% of the total 

static energy required by the computation respectively. Because different hardware chips have different λ 

values, given a λ, the total energy saving by using DREAM-MCP for a specific hardware chip, including both 

dynamic and static 

 

Figure 2GNBP (8-Body): energy consumption. This figure shows the comparison of energy consumptions of using DREAM-MCP and 

AF, and the cost (overhead) resulting from the reasoning, for the 8-Body problem 

Table 2 Execution time at maximum frequency (12-Body) 

 

power consumption, can be calculated. Previous studies show that the static power for the current generation of 

CMOS technologies is in the order of magnitude 10% of the total chip power [28]. Therefore, the extra static 

power of our approach is approximately 1% of the total power, which is negligible. 

Discussion  

The Gravitational N-Body Problem and the Adaptive Quadrature represent two different types of computations. 

The workload of N-Body problem is static, that for Adaptive Quadrature is dynamically generated at runtime. 

As a result, more reasoning is required in Adaptive Quadrature, in order to calculate the frequency schedules for 

the cores. In the N-Body Problem, for both the cases where the workload is evenly and unevenly distributed  



ISSN NO: 9726-001X 
Volume 10 Issue 02 Apr 2022 
 

 

Table 3 Adaptive quadrature: execution time at maximum frequency 

 

Our method can save a significant amount of power across the cores. When compared to the savings produced 

by DREAM-MCP, which are 13.6%, the overhead created by the reasoning in Adaptive Quadrature is rather 

large, at an additional 3.5% of the energy used by the actual compu tation. Please be aware that we have 

assumed the availability of per-core frequency scaling on a single chip in order to justify our proposed solution. 

This frequency scaling is more granular than what is already on the market, such as per-chip frequency scaling. 

By requiring all cores on the same chip to run at the same frequency, our method may be extended to provide 

per-chip frequency scaling in a multi-chip context. The scope of this article does not allow for such an 

investigation, however.  

Conclusion  

Hardware and software developers must now consider the power consumption of multicore systems. The current 

methods of chip power analysis presume that all cores operate at the same frequency. However, new hardware 

innovations like quick voltage scaling and Turbo Boost provide more granular opportunities for control and, by 

extension, energy saving, by permitting selection of multiple frequencies for individual cores on a chip. The 

next obstacle is settling on appropriate values for these frequencies. First, we examine the potential for energy 

savings provided by these two crucial pieces of equipment. There are several lines of effort now under way. 

First, we are developing a method to construct schedules directly aiming for energy conservation, as opposed to 

first constructing a processor schedule based on the processor requirements of computations and then translating 

it into a frequency schedule. This method would, in essence, select the schedule with the best energy 

consumption profile from among a set of schedules that are equally good from the processor scheduling 

perspective. Second, we want to expand our method so that it may be used to systems that include dispersed 

components, mobile devices, or both. While in theory our method may be used to multicore mobile devices, the 

features of the challenges we tested it against in this research may be considerably different from those of actual 

mobile applications. To that end, the team led by the first author has been working on power-aware scheduling 

for mobile apps and assessing the power usage of various capabilities. 
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